

Feb 19-8:47 AM

Find fave for $f(x)=(x-3)^{2}$ on $[2,4]$

$$
\text { Save }=\frac{1}{b-a} \int_{a}^{b} f(x) d x \quad \begin{array}{ll}
u=x-3 & x=2 \\
& d u=d x \\
u=-1 \\
x=4
\end{array}
$$

$$
f_{\text {fore }}=\frac{1}{4-2} \int_{2}^{4}(x-3)^{2} d x=\frac{1}{2} \int_{-1}^{1} x^{2} d x
$$

$$
\text { when } \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \quad=\frac{1}{x} \cdot x \int_{0}^{1} u^{2} d u
$$

$$
\text { is } f(x) \text { is even. }
$$

$$
\left.\frac{u^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}
$$

Sind fave for $f(x)=(x-3)^{3}$ on $[2,4]$
$f_{\text {are }}=\frac{1}{4-2} \int_{2}^{4}(x-3)^{3} d x=\frac{1}{2} \int_{-1}^{1} u^{3} d u=0$

\longrightarrow

Dec 12-10:44 AM

$$
\begin{aligned}
& \text { Consider the region bounded by } x^{2}+y^{2}=r^{2} \text {. } \\
& =2 \pi\left[r^{3}-\frac{r^{3}}{3}\right]=2 \pi \cdot \frac{2 r^{3}}{3} \\
& =\frac{4 \pi r^{3}}{3} \text { volume of }
\end{aligned}
$$

Dec 12-11:03 AM

$$
\begin{aligned}
& \text { Evaluate } \int\left(x^{2} \sqrt{2+x} d x\right. \\
& \begin{aligned}
& u=\sqrt{2+x} \\
& u^{2}=2+x \rightarrow u^{2}-2=x\left.=2 \int\left(u^{2}-2\right)^{2} u-4 u^{2}+4\right) \cdot u^{2} d u
\end{aligned} \\
& \text { 2udu}=d x \quad \\
& =2\left[\left(u^{6}-4 u^{4}+4 u^{2}\right) d u\right. \\
& =2\left[\frac{(\sqrt{2+x})^{7}}{7}-\frac{4(\sqrt{2+x})^{5}}{5}+\frac{4(\sqrt{2+x})^{3}}{3}\right]+C
\end{aligned}
$$

\qquad

Dec 12-11:22 AM

